Tuning curve shift by attention modulation in cortical neurons: a computational study of its mechanisms.

نویسندگان

  • Albert Compte
  • Xiao-Jing Wang
چکیده

Physiological studies of visual attention have demonstrated that focusing attention near a visual cortical neuron's receptive field (RF) results in enhanced evoked activity and RF shift. In this work, we explored the mechanisms of attention induced RF shifts in cortical network models that receive an attentional 'spotlight'. Our main results are threefold. First, whereas a 'spotlight' input always produces toward-attention shift of the population activity profile, we found that toward-attention shifts in RFs of single cells requires multiplicative gain modulation. Secondly, in a feedforward two-layer model, focal attentional gain modulation in first-layer neurons induces RF shift in second-layer neurons downstream. In contrast to experimental observations, the feedforward model typically fails to produce RF shifts in second-layer neurons when attention is directed beyond RF boundaries. We then show that an additive spotlight input combined with a recurrent network mechanism can produce the observed RF shift. Inhibitory effects in a surround of the attentional focus accentuate this RF shift and induce RF shrinking. Thirdly, we considered interrelationship between visual selective attention and adaptation. Our analysis predicts that the RF size is enlarged (respectively reduced) by attentional signal directed near a cell's RF center in a recurrent network (resp. in a feedforward network); the opposite is true for visual adaptation. Therefore, a refined estimation of the RF size during attention and after adaptation would provide a probe to differentiate recurrent versus feedforward mechanisms for RF shifts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of locus ceruleus phasic electrical stimulation on responses of barrel cortical cells to controlled mechanical displacement in rats

Behavioral and electrophysiological evidences have shown that locus ceruleus (LC) is involved in different tasks including modulation of sensory processing and shift of attention. In the present study, single unit responses of barrel cortical cells was recorded following controlled mechanical displacement of the principal and peripheral vibrissae in adult rats (100 trials of 200 µm deflection f...

متن کامل

A mechanistic cortical microcircuit of attention for amplification, normalization and suppression

Computational models of visual attention have replicated a large number of data from visual attention experiments. However, typically each computational model has been shown to account for only a few data sets. We developed a novel model of attention, particularly focused on explaining single cell recordings in multiple brain areas, to better understand the underlying computational circuits of ...

متن کامل

Receptive field shift and shrinkage in macaque middle temporal area through attentional gain modulation.

Selective attention is the top-down mechanism to allocate neuronal processing resources to the most relevant subset of the information provided by an organism's sensors. Attentional selection of a spatial location modulates the spatial-tuning characteristics (i.e., the receptive fields of neurons in macaque visual cortex). These tuning changes include a shift of receptive field centers toward t...

متن کامل

Corticofugal modulation of the paradoxical latency shifts of inferior collicular neurons Running title: Corticofugal modulation of latencies of collicular neurons

The central auditory system creates various types of neurons tuned to different acoustic parameters other than a specific frequency. The response latency of auditory neurons typically shortens with an increase in stimulus intensity. However, ~ 10% of collicular neurons of the little brown bat show a “paradoxical latency-shift (PLS)”: long latencies to intense sounds but short latencies to weak ...

متن کامل

Gain modulation of neuronal responses by subtractive and divisive mechanisms of inhibition.

Gain modulation of neuronal responses is widely observed in the cerebral cortex of both anesthetized and behaving animals. Does this multiplicative effect on neuronal tuning curves require underlying multiplicative mechanisms of integration? We compare the effects of a divisive mechanism of inhibition (noisy excitatory and inhibitory synaptic inputs) with the effects of two subtractive mechanis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 16 6  شماره 

صفحات  -

تاریخ انتشار 2006